Εξόρυξη δεδομένων και διαχείριση δεδομένων μεγάλης κλίμακας

Συλλογή και προεπεξεργασία δεδομένων. Προϋπόθεση για επιτυχή εξόρυξη δεδομένων, Εξόρυξη δεδομένων, Αποθήκες Δεδομένων και Άμεση Αναλυτική Επεξεργασία, Επισκόπηση Τεχνικών Εξόρυξης Δεδομένων, Συστήματα αρχείων μεγάλης κλίμακας και η πλατφόρμα Map-Reduce, Ανάλυση Συνδέσμων, Εξόρυξη από Ροές Δεδομένων, Διαφήμιση στον Παγκόσμιο Ιστό, Εξόρυξη Δεδομένων από Γράφους Κοινωνικών Δικτύων, Συστήματα Συστάσεων, Διασυνδεδεμένα και ανοικτά δεδομένα, Σημασιολογικός Ιστός και  Δεδομένα Μεγάλης Κλίμακας, Εξόρυξη Δεδομένων και Επιχειρησιακή Νοημοσύνη.

 

Βιβλιογραφία

  1. Cimiano, O. Corcho, V. Presutti, L. Hollink, S. Rudolph (eds.), The Semantic Web: Semantics and Big Data, Proceedings of the 10th International Conference, ESWC 2013, Montpellier, LNCS 7882, Springer, 2013.
  2. Chen, R. H. L. Chiang, V. C. Storey, “Business Intelligence and Analytics: From Big Data to Big Impact”, MIS Quarterly, vol. 36, issue 4, Dec. 2012, p1165-1188
  3. Fan, A. Bifet,  “Mining Big Data: Current Status, and Forecast to the Future”, SIGKDD Explorations vol.14, issue 2, ACM Press
  4. R. Ganguly and A. Gupta, Data Mining Technologies and Decision Support Systems for Business and Scientific Applications, Encyclopedia of Data Warehousing and Mining, 2005 (http://www.inf.uni-konstanz.de/dbis/teaching/ws0607/busintelligence/papers/DMDW)
  5. Kohavi, N. J. Rothleder, E. Simoudis, “Emerging trends in business analytics”, Communications of the ACM – Evolving data mining into solutions for insights, vol. 45, issue 8, August 2002, pp 45-48 (http://www.inf.unikonstanz.de/dbis/teaching/ws0607/busintelligence/papers/TrendsBA.pdf)
  6. , Rajaraman, J., Leskovec, J.D., Ullman, Mining of Massive Datasets (2nd edition), Cambridge University Press, 2014 http://www.mmds.org
  7. P. Shim, M. Warkentin, J.F. Courtney, D.J. Power, R. Sharda, Ch. Carlsson, “Past, Present and Future of Decision Support Technology”, Decision Support Systems: Directions for the Next Decade, vol.33, issue 2, June 2002, pp. 111-126 (http://www.sciencedirect.com/science/article/pii/S0167923601001397)
  8. Sun, J. Han, Mining Heterogeneous Information Networks: Principles and Methodologies, Morgan & Claypool, 2012
  9. J. Watson, B. H. Wixom, “The Current State of Business Intelligence”. IEEE Computer, vol. 40, issue 9, Sept. 2007, pp 96-99 (http://student.bus.olemiss.edu/files/conlon/others/Others/BusinessIntelligence/CurrentState%20of%20BI%20_IEEE.pdf)
  10. Witten, E. Frank, Μ. Hall, Data Mining: Practical Machine Learning Tools and Techniques, 3rd ed., Morgan Kaufmann, 2011.
  11. Han, M. Kamber, J. Pei, Data Mining: Concepts and Techniques, 3rd ed., Morgan Kaufmann, 2011.
  12. Marakas, G., (2003), Modern Data Warehousing, Mining, and Visualization. Core concepts, Prentice-Hall
  13. d’Aquin, G. Kronberger, M. Suárez-Figueroa, “Combining Data Mining and Ontology Engineering to enrich Ontologies and Linked Data”, in: J. Volker, H. Paulheim, J. Lehmann, M. Niepert (eds.): Proceedings of the 1st International Workshop “Knowledge Discovery and Data Mining Meets Linked Open Data”, Heraklion, 2012,  (http://ceur-ws.org/Vol-868/)
  14. Fan, A. Bifet, “Mining Big Data: Current Status, and Forecast to the Future”, SIGKDD Explorations vol.14, issue 2, ACM Press (http://www.sigkdd.org/sites/default/files/issues/14-2-2012-12/V14-02-01-Fan.pdf)
  15. Heath, C. Bizer, Linked Data: Evolving the Web into a Global Data Space, Morgan & Claypool, 2011 (http://linkeddatabook.com/editions/1.0/)
  16. Palathingal, S. Dascalu, F. C. Harris Jr, Y. Varol, “A Brief Survey of Data Curation Literature”, Proc. CATA 2015, March 9-11, 2015, Honolulu, Hawaii (https://www.cse.unr.edu/~fredh/papers/conf/143-absodcl/paper.pdf)
  17. Paulheim, “Exploiting Linked Open Data as Background Knowledge in Data Mining”, in: C. d’ Amato, P. Berka, V. Svátek, K. Wecel (eds.): Proceedings of the International Workshop on Data Mining on Linked Data (DMoLD), Prague, 2013, (http://ceur-ws.org/Vol-1082/)
  18. P. Shim, M. Warkentin, J.F. Courtney, D.J. Power, R. Sharda, Ch. Carlsson, “Past, Present and Future of Decision Support Technology”, Decision Support Systems: Directions for the Next Decade, vol.33, issue 2, June 2002, pp. 111-126 (http://www.sciencedirect.com/science/article/pii/S0167923601001397)
  1. Sun, J. Han, Mining Heterogeneous Information Networks: Principles and Methodologies, Morgan & Claypool, 2012 (http://kdd2012.sigkdd.org/sites/keynote/2012-08-KDD-Keynote-Han.pdf)
  1. Land, S., Fischer S. (2012). RapidMiner 5.0 – RapidMiner   in Academic use, http://docs.rapidminer.com/downloads/RapidMiner_RapidMinerInAcademicUse_en.pdf
  1. Xindong Wu et al. (2008) Top 10 Algorithms in Data Mining, Knowl Inf Syst 14: 1-37, Springer, (http://www.cs.uvm.edu/~icdm/algorithms/10Algorithms-08.pdf)
  2. Turban, R. Sharda, D. Delen, D. King, Business Intelligence: A Managerial Approach (2nd Edition), Prentice Hall, 2011
  3. North, Data Mining for the Masses, (2nd ed.) with implementations in RapidMiner and R, paperback, January 8, 2016
  4. J. Watson, B. H. Wixom, “The Current State of Business Intelligence”. IEEE Computer, vol. 40, issue 9, Sept. 2007, pp 96-99 (http://student.bus.olemiss.edu/files/conlon/others/Others/BusinessIntelligence/CurrentState%20of%20BI%20_IEEE.pdf)
  1. Α. Νανόπουλος, Ι. Μανωλόπουλος, Εισαγωγή στην Εξόρυξη και τις Αποθήκες Δεδομένων, Εκδόσεις Νέων Τεχνολογιών, 2008.
  2. A. Rajaraman, J.D. Ullman, Εξόρυξη από Μεγάλα Σύνολα Δεδομένων, (Mining of Massive Datasets, 1st edition, CUP, 2012), Εκδόσεις Νέων Τεχνολογιών, 2013
  3. P-N. Tan, M. Steinbach, V. Kumar, Εισαγωγή στην Εξόρυξη Δεδομένων, (Introduction to Data Mining, AddisonWesley, 2006), Εκδόσεις Τζιόλα, 2010.